Mechanism and Lab diagnosis of normal Fibrinolysis

In fibrinolysis, a fibrin clot, the product of coagulation, is broken down. Its main enzyme plasmin cuts the fibrin mesh at various places, leading to the production of circulating fragments that are cleared by other proteases or by the kidney and liver

 

Mechanism or Physiology

 Plasmin is produced in an inactive form, plasminogen, in the liver. Although plasminogen cannot cleave fibrin, it still has an affinity for it, and is incorporated into the clot when it is formed.

Tissue plasminogen activator (t-PA) and urokinase are the agents that convert plasminogen to the active plasmin, thus allowing fibrinolysis to occur. t-PA is released into the blood slowly by the damaged endothelium of the blood vessels, such that, after several days (when the bleeding has stopped), the clot is broken down. This occurs because plasminogen became entrapped within the clot when it formed; as it is slowly activated, it breaks down the fibrin mesh. t-PA and urokinase are themselves inhibited by plasminogen activator inhibitor-1 and plasminogen activator inhibitor-2 (PAI-1 and PAI-2). 

In contrast, plasminogen further stimulates plasmin generation by producing more active forms of both tissue plasminogen activator (tPA) and urokinase.

α2-Antiplasmin and α2-macroglobulin inactivate plasmin. Plasmin activity is also reduced by thrombin-activatable fibrinolysis inhibitor (TAFI), which modifies fibrin to make it more resistant to the tPA-mediated plasminogen.


 

Lab diagnosis or Measurement

Plasmin breaks down fibrin into soluble parts called fibrin degradation products (FDPs). FDPs compete with thrombin, and thus slow down clot formation by preventing the conversion of fibrinogen to fibrin. This effect can be seen in the thrombin clotting time (TCT) test, which is prolonged in a person that has active fibrinolysis.

FDPs, and a specific FDP, the D-dimer, can be measured using antibody-antigen technology. This is more specific than the TCT, and confirms that fibrinolysis has occurred. It is therefore used to indicate deep-vein thrombosis, pulmonary embolism, DIC and efficacy of treatment in acute myocardial infarction. Alternatively, a more rapid detection of fibrinolytic activity, especially hyperfibrinolysis, is possible with thromboelastometry (TEM) in whole blood, even in patients on heparin. In this assay, increased fibrinolysis is assessed by comparing the TEM profile in the absence or presence of the fibrinolysis inhibitor aprotinin. Clinically, the TEM is useful for near real-time measurement of activated fibrinolysis for at-risk patients, such as those experiencing significant blood loss during surgery.[4]

Testing of overall fibrinolysis can be measured by a euglobulin lysis time (ELT) assay. The ELT measures fibrinolysis by clotting the euglobulin fraction (primarily the fibrinolytic factors fibrinogen, PAI-1, tPA, α2-antiplasmin, and plasminogen) from plasma and then observing the time required for clot dissolution. A shortened lysis time indicates a hyperfibrinolytic state and bleeding risk. Such results can be seen in peoples with liver disease, PAI-1 deficiency or α2-antiplasmin deficiency. Similar results are also seen after administration of DDAVP or after severe stress.

 

https://www.slideshare.net/muhammadhelmi37853/fibrinolysis 

 

.

Comments

Popular posts from this blog

Applied Hematology–II (BMLS 601-18)

HISTOTECHNOLOGY – II & Cytology BMLS 605-18

BMLS 501-18 Applied Hematology-I NOTES